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Enabling New Interactions with Library Digital

Collections: Automatic Gender Recognition in

Historical Postcards via Deep Learning

Abstract

TheWalter Havighurst Special Collections from University Archives & Preser-
vation at Miami University’s King Library has a growing collection of over
600,000 historical postcards, with approximately 30,000 digitized, primarily
from the Midwest during 1890-1919. This collection supports various lines
of inquiry from users, such as analyzing the evolution of gender portrayal in
popular media in the United States. However, manually separating the col-
lection into postcards of males and females would take thousands of hours,
which prevents the library from supporting sociological analyses at scale.
Using an open postcard dataset, we trained deep neural networks to auto-
matically detect people and classify them as male or female. We showed
that this approach can accurately detect and classify females and confidently
detect and label males for the library’s collection of historical postcards. By
employing deep neural networks, the library can enhance its metadata within
hours and support new research inquiries at scale.

Keywords: Applied computer vision, Gender Recognition, Historical
postcards, Object detection, Transfer learning

1. Introduction

Digital libraries, digital collections, or digital archives all refer to sup-
porting users of a university’s library by providing online access to various
materials. In the case of special collections, one (or more) platforms are often
developed in addition to a library’s main website in order to support users
in navigating digitized heritage materials for teaching or research (Harden
et al., 2022). However, as summarized by Burns et al. (2019), “when dig-
itized and placed online, these unique materials are likely to attract a new
and wider audience who may have little or no experience navigating special
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collections”. Enabling access to special collections in ways that match the
current expectations of users to obtain actionable data is thus a key chal-
lenge (Zavalina and Burke, 2023; Mulrennan, 2020). The problem is not
necessarily resolved solely by giving and promoting a ‘front end’ online ac-
cess to specialized collections (Mansbach, 2022). There is evidence regarding
the ‘back end’ di�culty of keeping up with the item-level tasks for special
collections at both well-endowed libraries and operations with smaller bud-
gets (Pritchard, 2009).

Although archival specialists can assist users in navigating digital collec-
tions for specific research questions, human resources have limitations (Tam-
maro, 2020). Most importantly in this article, the number and type of records
are important mediating factors. For example, the collection of 528,000 birth
and death records at the University of Cincinnati1 can be conveniently nav-
igated online, as each record consists of a few fields (e.g., name, occupa-
tion, address) and several fields and searchable. In contrast, the collection
of almost 11,000 historical (‘dime’) novels at Northern Illinois University2

may lead to more open-ended research questions such as ‘how were women
historically portrayed’ or ‘has the rise of the contemporary environmental
movement been paralleled with a growth in environmental themes in fic-
tion’. Since users cannot query specific fields to answer these questions, and
much less read every novel, they used machine learning to extract patterns
from the text and increase the metadata available for queries (Short, 2019).
There is thus a documented potential to integrate machine learning with
the discovery tools that form part of the access technologies to special col-
lections (Heyliger et al., 2016). The ability of machine learning algorithms
to extract information may also contribute to alleviate the growing backlog
problem of completely uncatalogued materials, particularly as special col-
lections are making uncatalogued materials available online (Tam, 2017). In
this paper, we explore the untapped potential of machine learning algorithms
to automatically extract metadata from special collections of historical post-
cards, thus addressing both the backlog problem and supporting new lines
of inquiries by potential users.

1https://drc.libraries.uc.edu/handle/2374.UC/2032
2https://dimenovels.lib.niu.edu/
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2. Problem Statement

The Walter Havighurst Special Collections, University Archives & Preser-
vation at Miami University’s King Library has a physical collection of over
600,000 postcards from every state and grows as new donations are accepted.
The digitization has been underway since 2013, with over 30,000 items cur-
rently digitized and catalogued (front picture, back picture, metadata such as
whether it was mailed with a date/place of origin). Based on the 7,976 digi-
tized postmarked instances, most of the digitized collection is from 1890-1919
(Figure 1). Providing an extensive set of metadata and supporting various
lines of research on-demand for such a vast, growing, historical collection is
an intensive process that vastly exceeds library resources. To address the
need for automatic metadata extraction to assist both research needs and
cataloging, we propose to use deep neural networks given their demonstrated
strengths in analyzing images (Section 3). Specifically, we develop a machine
learning method to automatically detect people in historical postcards and
classify their gender as male or female3.

Figure 1: The number of digitized postcards per decade.

3. Literature Review

3.1. Computer Vision for Historical Postcards

The applications of computer vision to historical postcards have been lim-
ited. Previous work has analyzed a collection of 1,346 postcards from World
War I to classify postcards as one of eight categories: cartoon, destruction,
frontline, landscape, love & poem, patriotism, portrait, or weapons (Grzesz-
ick and Fink, 2014). Moreover, they demonstrated the di�culty of face
detection on historical postcards and created a face detection method for
historical images with a high precision of 94.7% but a low estimated re-
call of approximately 31% (Grzeszick and Fink, 2014). The authors also
explored automatically grouping postcards by spotting potentially identical

3
Given the historical and cultural context of the digitized collection, we classify gen-

der as male or female, where gender refers to socially constructed roles, behaviors, and

identities.
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addressees (Fink et al., 2014). Additional work investigated layout extrac-
tion for historical postcards (Garćıa et al., 2022) using 100 digitized postcards
from 1900-1930 to assign each pixel to one of seven categories in the postcard
image layout: background, postmark, stamp, handwritten text, printed text,
auxiliary lines, and image or drawing.

3.2. Object Detection

Object detection is a subfield of computer vision that determines where
and what objects occur in an image. Object detection algorithms predict
bounding boxes enclosing desired objects in an image and classes for each
bounding box. To train an object detection model, training images are man-
ually annotated with bounding boxes enclosing items of interest with labels
indicating the type of the object. For example, to detect people and their
gender, people in training images would be enclosed by bounding boxes with
their gender labeling the box (Figure 2). Object detection models use these
bounding boxes for reference during training to learn what defines the labeled
item within the bounding box.

Figure 2: Bounding boxes enclose people. A blue bounding box indicates a person is a

male, and a red bounding box denotes a female.

Two popular approaches for object detection are Region-Based Convolu-
tional Neural Networks (R-CNN) (Girshick et al., 2014) and You Only Look
Once (YOLO) (Redmon et al., 2016). R-CNN is a two-step process: it first
predicts bounding boxes, then classifies their content (Girshick et al., 2014).
Numerous extensions have been proposed to improve accuracy and decrease
inference time (Girshick, 2015; Ren et al., 2015), but its two-stage approach
can still hinder its inference speed. In contrast, the core idea of YOLO is “you
only look once”: the algorithm draws bounding boxes and detects objects
simultaneously, resulting in a faster inference speed (Redmon et al., 2016).
Since the initial proposal, several modifications have also sought to increase
accuracy (Jiang et al., 2022). Both approaches leverage convolutional neural
networks (Gu et al., 2018), which are widely used in computer vision (Li
et al., 2022).

3.3. Measuring Performance via Cross-validation

In machine learning and computer vision, a dataset is split into a training
set used to build and select models and a testing set used to evaluate the
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performance of the final model. If this split occurred only once, then the
model’s performance may partially be attributable to luck, and parameters of
the machine learning algorithm may not be optimized. To provide a rigorous
evaluation and perform an optimization process, the training set is also split,
thus resulting into training/validation/testing sets. Hyper-parameters of the
machine learning process are optimized on these splits, then the model is
trained with the best values using the entire training set and finally applied
onto the testing set. This process is called cross-validation (Berrar, 2019)
and each of the splits results in non-overlapping folkds with approximately
the same number of instances. This is a widely used process used in machine
learning (King et al., 2021) and computer vision (DeCost and Holm, 2015),
including object detection (Gonzales-Mart́ınez et al., 2021).

For a classification problem, it is critical to ensure a balanced number of
classes in each fold; otherwise, the model may favor the majority class (Jap-
kowicz and Stephen, 2002). For example, if there are 50 men and 50 women
and 10 folds, it is ideal to have 10 folds each with five men and women. This
balanced k-fold cross-validation is called stratified k-fold cross-validation. In
some applications such as ours, each observation may contain instances of
multiple classes (e.g., an image can have three women and one man), so
stratification with multiple labels is necessary. If multiple labels are bal-
anced with k-fold cross-validation, the process is called multi-label stratified
k-fold cross-validation (Sechidis et al., 2011).

3.4. Data Augmentation

Generalizability, the ability to apply the model to never-before-seen data,
is a challenge in machine learning and computer vision. Small sample sizes
cannot represent many variations, and it can be di�cult to get a large number
of samples (Shorten and Khoshgoftaar, 2019), especially in certain applica-
tion areas like medical imaging and when obtaining and annotating training
data is expensive for a task such as object detection (Kaur et al., 2021).
Without enough training data, overfitting and large class imbalances can oc-
cur, impairing the model’s accuracy. Therefore, the quantity and diversity
of training data are critical to the model’s accuracy. Data augmentation
is the process of using existing data to generate new data points and is a
popular approach used to increase the quality and size of the training set.
It is widely used in computer vision (Shorten and Khoshgoftaar, 2019; Kaur
et al., 2021; Wang et al., 2020), including in sensitive domains like medical
imaging (Chlap et al., 2021; Nalepa et al., 2019), to increase the size of the
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training data, correct class imbalances, and produce models against common
alterations (e.g., slightly rotated images).

In computer vision, several data augmentation techniques can help make
a model robust to common distortions and significantly increase its accu-
racy (Kaur et al., 2021). For example, randomly removing part of an image
(Figure 3) can force the model to search for other relevant content while
the most discriminative content is hidden, reducing the risk of over-fitting,
making the model robust to occlusion, and boosting model performance on
the given task (Zhong et al., 2020). Other common techniques include hor-
izontally flipping the image and randomly cropping or rotating the image
(Figure 3), which can make the model robust to positional bias. Addi-
tionally, Kernel filters, like gaussian blur, increase accuracy on blurred im-
ages (Shorten and Khoshgoftaar, 2019).

There are three main challenges with data augmentation for computer
vision. First, there is no universal way to select suitable augmentations; it
depends on the problem and dataset. For example, vertical flipping images
in facial recognition may not increase performance because vertically flipped
images are likely rare in the testing set and real-world data. Second, some
data augmentations may not preserve the labels or items of interest in the
image (Shorten and Khoshgoftaar, 2019). For instance, image translation
may move bounding boxes out of the image, and rotation may cause a digit
recognition model to mistake a 9 for a 6 (Shorten and Khoshgoftaar, 2019).
Third, data augmentations can reduce model performance instead of improv-
ing it, as exemplified in studies on random cropping (Yang et al., 2021). As a
result, the selection of data augmentation techniques is important and relies
on both an understanding of the data and computer vision algorithms.

Figure 3: Five common data augmentations.

3.5. Transfer Learning

Transfer learning attempts to improve performance in one target domain
by leveraging information from a related domain, similar to how a person
with experience playing guitar can use that knowledge to learn to play the
piano more e↵ectively than someone without a musical background (Weiss
et al., 2016). Transfer learning is frequently used in vision tasks such as object
detection (Talukdar et al., 2018) because training data in the target domain
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is rare, expensive to collect and label, or inaccessible (Weiss et al., 2016).
Transfer learning is achieved by freezing some layers of the neural network,
which preserves knowledge from the previous domain (Jocher et al., 2022)
and allows to adapt to a new domain with minimal costs for re-training. For
example, freezing all but the output layer prevents any of the frozen layers’
weights from changing but allows the output layer’s weights to change in
order to predict new classes (Jocher et al., 2022). Additionally, training may
start from pre-trained weights, which were trained on a dataset in a di↵erent
domain to leverage knowledge from that domain (Jocher et al., 2022).

4. Methodology

Figure 4: Our methodology.

We followed a six-step process to predict the number of males and females
in historical postcards (Figure 4):

1. We created a training set from postcards available online, in order to
create a reusable model that can be applied to various historical col-
lections. The postcards obtained from our library were held separately
as a testing set.

2. We balanced the number of males and females using multi-label strati-
fied 10-fold cross-validation (Section 3.3), thus avoiding the creation of
a model that is biased in performing well on one type at the expense
of the other.

3. We augmented the data by applying seven methods (Section 3.4) inde-
pendently to each image in the training set. This increase in size and
variety of the training set ultimately contributes to the robustness of
the model.

4. We trained YOLOv5x object detection models (Jocher et al., 2022)
through transfer learning (Section 3.5) starting from the pre-trained
weights, which were trained on the COCO dataset (Lin et al., 2014).

5. We evaluated the models with the best hyper-parameter combinations
on the validation set, originating from online postcards. This provides
insight into the ability of the models to accurately detect and classify
males and females for postcards that are similar to the training data.
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6. We tested the best-trained model on postcards from the library’s dig-
itized collection, thus evaluating the ability of our model to generalize
beyond their training set and be readily used by a library.

All programming used Python 3.7.1 with several packages, listed in Ta-
ble 1. Our code is publicly and permanently available on an anonymized
repository at doi.org/10.5281/zenodo.7689513. Each of the six consecu-
tive steps is detailed in a subsection below.

4.1. Build Training and Testing Set

The library provided 200 images from their historical postcard collection
for testing. A total of 2,028 additional images were gathered from various
repositories to create a training set. Once the data was collected, we dis-
patched each image to an annotator who used CVAT (Sekachev et al., 2020)
to enclose each person by a bounding box and choose a male or female label.
We employed five annotators and ensured consistency in bounding boxes and
labels as the work of each annotator was reviewed by another. Images were
eliminated for any one of four reasons (Figure 5). After elimination, images
in the final testing set were assigned a time period using the date postmarked
or the input of two subject matter experts.

Figure 5: The four reasons postcards were removed from the testing set.

4.2. Multi-label Stratified 10-Fold Cross-validation

We performed multi-label stratified 10-fold cross-validation (Sechidis et al.,
2011) to create 10 training and validation sets to obtain the best hyper-
parameter combination for each model; the training and type of models are
described in section 4.4. We leveraged stratification to approximately balance
the number of males and females in each training and validation set and avoid
skewing the predictions towards the majority class (Japkowicz and Stephen,
2002).

4.3. Data Augmentation

Each image in the training set went through seven augmentation tech-
niques (Figure 6) to increase the size of the training dataset, avoid over-
fitting (Shorten and Khoshgoftaar, 2019), and make the model robust to
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positional bias (e.g., a person appearing in a di↵erent position in a post-
card) (Yang et al., 2021) and other common variations to increase model
accuracy (Shorten and Khoshgoftaar, 2019). We chose to shear and equal-
ize each postcard because shearing and equalizing are frequently used in
optimal augmentation policies (i.e., sequences of augmentations) for object
detection (Zoph et al., 2020). Shearing distorts the position and size of the
bounding box, whereas equalizing improves the contrast and does not modify
the bounding boxes (Zoph et al., 2020). We selected random cropping and
random horizontal flipping (i.e., flipping the image with a certain probabil-
ity) because they are the standard configuration for object detection tasks
with limited training data (Yang et al., 2021), and random cropping may
help increase the spatial robustness of the model since the object of interest
may appear in di↵erent locations (Yang et al., 2021). Additionally, hori-
zontally flipping the image has increased performance on popular computer
vision datasets such as ImageNet (Shorten and Khoshgoftaar, 2019). Note,
we did not select two popular augmentations (rotation and vertical transla-
tion) because they resulted in bounding boxes extending out of the image
(i.e., people would be moved o↵ screen).

To further increase the quantity and diversity of training data, we also
created three additional augmentation strategies by applying combinations
of some of the four augmentations discussed above. A combination consists
of applying several augmentations, one after the other. This is known as a
‘sequential augmentation’ and it is a common policy in computer vision to
improve performances on object detection tasks (Zoph et al., 2020). The first
policy horizontally flips and equalizes the image. The second policy starts
by shearing the image, and the third starts by randomly cropping the image.
Then, the second and third policies horizontally flip the image half the time
and equalize it.

Figure 6: A postcard and the seven additional training images produced by each augmen-

tation.

4.4. Training

We trained six versions of the YOLOv5x model (Jocher et al., 2022)
by creating variants where none of the layers was frozen (Unfrozen), the
backbone was frozen (Backbone), and all but the last output layer frozen
(Last Layer). Models were trained on the augmented and unaugmented
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version of each of the 10 folds starting from the pre-trained YOLOv5x weights
trained on the COCO dataset (Lin et al., 2014) to detect and classify people
as male or female. As a result, 60 models were trained in total. Starting from
the pre-trained weights usually reduces training time (Jocher et al., 2022),
and the COCO dataset contains people, so the model can leverage the domain
knowledge of detecting people and may only need minor modifications to
predict gender. We selected a YOLO-based model because of YOLO models’
strong performance on object detection benchmarks such as COCO (Lin
et al., 2014) and PASCAL VOC (Everingham et al., 2012) and their ability
to use additional features instead of just facial features to detect people,
whereas many popular approaches for gender detection rely solely on facial
features (Azzopardi et al., 2018; Antipov et al., 2017; Dhomne et al., 2018)
and only perform well on high-resolution images free of corruptions (Greco
et al., 2021), degrading their performance on historical postcards, especially
when people’s faces are not fully visible. The models were trained with a
Tesla V100-PCIE-16GB GPU for 300 epochs with a batch size of 8, an image
size of 640, and 1 worker.

4.5. Validation and Testing

We performed validation and testing in a six-step process. First, we
applied each model to the validation set for its fold after training. The
trained models may predict someone as both male and female, so there may
be two bounding boxes around a person, each with their own confidence
(Figure 7). Our second step eliminated these overlapping bounding boxes.
We used the intersection over the union (IoU) (Figure 8) to determine how
much two bounding boxes overlap, and we introduced a parameter to detect
whether two bounding boxes (one predicting male and the other female)
enclose the same person. We varied the parameter in the interval [0.01, 1] in
increments of 1, where 1 means the bounding boxes must perfectly intersect
to be considered the same, and 0.01 considers two bounding boxes as the same
if they intersect by at least 1% (Figure 9). If the IoU of two bounding boxes
meets or exceeds the threshold, we select the bounding box and prediction
with the higher confidence.

Figure 7: Overlapping male and female predictions.

Third, we assessed the accuracy of the predictions with the labeled ground-
truth validation set for each of the 10 folds. While two bounding boxes could
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Figure 8: The intersection over the union (IoU) is calculated by dividing the area of

intersection by the area of the union, producing a value between 0 (no overlap) and 1

(complete overlap).

Figure 9: Example intersection over the union (IoU) values. The higher the value, the

more the bounding boxes overlap.

occasionally be produced in step two, it becomes much more frequent in step
three since we compare predicted bounding boxes with ground-truth bound-
ing boxes. We thus use the same strategy of measuring the IoU and applying
a parameter to determine whether two boxes are the same. We varied the
parameter in the interval [0.5, 1] in increments of 0.01, where a value of 0.5
means the bounding boxes must intersect by at least 50% to consider them a
match. A minimum value of 0.5 is in-line with widely-used object detection
datasets such as COCO (Lin et al., 2014) and PASCAL VOC (Everingham
et al., 2012). For each predicted bounding box, we checked if it matches a
ground-truth bounding box. If so, we then check if the classes (male and
female) also match. For completeness, we also check if bounding boxes from
the ground-truth dataset were missed by the model’s predictions.

Fourth, we optimized the two IoU parameters (to determine overlapping
predictions or a match with the ground-truth) for accuracy and F1. This
is part of finding the best combinations of hyper-parameter values to detect
and classify males and females. Fifth, as expected in a nested cross-fold
validation, we applied the hyper-parameter combinations with the highest
accuracy and F1 found in the validation set onto the testing set for each of
the 60 trained models. Finally, we calculated the accuracy, precision, recall,
and F1 for each model’s best hyper-parameter combinations for accuracy and
F1 on the testing set. We calculated these metrics for the overall testing set
and also for the subset of postcards from 1890-1919, since most of library’s
collection is from this time period.

4.6. Inference on Collection

The trained model with the highest performance on the testing set was
applied to the front image of 28,308 digitized postcards, predicting the num-
ber of males and females in each postcard. Inference was performed with a
Tesla V100-PCIE-16GB GPU.
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5. Findings

5.1. Data Pre-Processing: Balancing and Augmentation
After annotating and eliminating postcards, we created a balanced train-

ing set of 987 images with 1238 males and 1238 females. The testing set
consisting of 123 images with 150 and 160 males (Figure 10), including 72
images with 96 females and 115 males from 1890-1919. Performing multi-
label stratified 10-fold cross-validation produced 10 training and validation
sets with approximately the same number of males, females, and images
(Table 2). We augmented each fold’s training set (Table 3), generating 5677
augmented images and bringing the size of the training set to 6664 images.

Figure 10: Breakdown of the 77 postcards removed from the testing set.

5.2. Validation and Testing
The best of the 60 trained models have accuracy, precision, recall, and F1

over 0.9 for both males and females on their validation sets after optimizing
the IoU duplicate threshold and IoU ground-truth threshold for accuracy
(Tables 4 and 5) and F1 (Tables 6 and 7). Note, di↵erent values of the IoU
duplicate threshold and IoU ground-truth threshold hyper-parameters vastly
a↵ect the model’s F1 and accuracy (Figure 11). Augmented Backbone Fold
4, the model trained with its backbone frozen on the augmented version of
fold 4, has the best performance according to accuracy and F1 for females
overall and from 1890-1919 on the testing set. From 1890-1919, it has an
accuracy of 0.69182 (Table 8), and it has an overall accuracy of 0.60265 and
precision of 0.69841 (Table 9). Unaugmented Backbone Fold 3, the model
trained with its backbone frozen on the unaugmented version of fold 3, has
the best performance according to accuracy and F1 for males overall and from
1890-1919 on the testing set. From 1890-1919, it has an accuracy of 0.58824
and a precision of 0.94872 (Table 10), meaning when the model predicts a
male, it is a male 94.872% of the time. Overall, it has an accuracy of 0.63844
and a precision of 0.92727 (Table 11). For the sake of brevity, we omit the
tables of the best models according to F1 because the best performing models
are the same as the ones for accuracy. Our full results for all 60 models on
the validation and testing sets are available in a permanent and anonymous
repository at doi.org/10.5281/zenodo.7689882. Unaugmented Backbone
Fold 3 completed inference on 28,308 postcards in 4.28 hours, finding 11,313
females and 12,164 males.
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Figure 11: The e↵ects of the IoU duplicate threshold and IoU ground-truth threshold

on model F1 and accuracy for a model trained with its none of its layers frozen on the

augmented version of fold 2 (i.e., Augmented Unfrozen Fold 2). Note, the F1 is undefined

when the IoU ground-truth threshold is 1, producing the blank values in that column.

6. Discussion

Given the di�culty at navigating unstructured data in a library’s special
collections, and the growing trend of making uncatalogued materials avail-
able online, there is a documented need to e�ciently extract metadata from
such collections at scale. Metadata can contribute to cataloging e↵orts and
provides new data fields that support user queries. In this paper, we fo-
cused on a historical postcard collection which faces both of the challenges
evoked: data is not fully catalogued (10 years have allowed to cover 5% of
the data) and would not support user queries related to gender. Studies
of gender portrayal in historical collections are popular library projects for
students (Pankuch and Wilson, 2019; Teaching et al., 2022) and an active
subject of inquiry at the crossroad of history and identity (Ringer, 2007;
Anagnostopoulous, 2011; Chakraborty, 2018). For example, the subtle gen-
dered shift in occupations and traditions shown in postcards can contribute
to understand broader trends in national identities and social transforma-
tions (Pite, 2021). By using machine learning techniques from computer
vision, our study shows that gender metadata can accurately be added to
historical postcard collections, thus supporting scholarship and the missions
of libraries’ special collections.

The trained models successfully achieved our goal of detecting gender
in historical postcards, especially in the Midwest between 1890-1919. Our
best models for this time period had an accuracy of 0.69182 on detecting
and classifying females and precision of 0.94872 on detecting and classifying
males. While human accuracy would be higher, our model was able to process
28,308 historical postcards within 4.28 hours, while no human may even want
to process such a volume of records. Together, these results enable researchers
to use new filters and quickly search a special collection for images with a
target gender.

Our precision of 94.872% and recall of 33.036% from 1890-1919 on male
gender detection exceed the precision of 94.7% and the recall of approxi-
mately 31% for face recognition on World War I postcards in past stud-
ies (Grzeszick and Fink, 2014). This improvement in results is partly at-
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tributable to accounting for a person’s entire body, as our bounding box is
not limited to faces. Our results also demonstrate the viability of a novel
application of computer vision to library sciences and historical postcards
on a collection much larger than the 1,346 (Grzeszick and Fink, 2014) and
100 (Garćıa et al., 2022) postcards analyzed by previous methods. Further-
more, the performances of our ‘augmented backbone’ model demonstrate a
successful application of data augmentation to historical postcards, which
was not leveraged in previous applications of computer vision to historical
postcards.

The collection primarily has postcards from the Midwest from 1890-1919,
and our analysis and model building focused on building the best possible
model for the collection. As a result, our models may not perform as well on
images from before 1890, after 1919, outside the Midwest or United States,
or that are not postcards. For example, our models’ performance may su↵er
when applied in di↵erent cultural contexts where men may also wear longer
clothing (Figure ??), since such garments were primarily worn by women
within the context of the Midwest from 1890-1919. As a result, it would
be of particular interest to create historically and culturally aware models
capable of accurately detecting people and classifying their gender in di↵er-
ent environments (Preston, 2009). Broadening the capacity of our models
would support studies in visual anthropology, particularly for marginalized
individuals (Cheung, 2000).

7. Conclusion

We aimed to develop an automatic method to detect people and classify
their gender in historical postcards to enable a more complex analysis of a
growing collection of over 600,000 (30,000 digitized) historical postcards and
the evolution of gender portrayal in popular media in the United States.
We successfully trained models capable of accurately identifying females and
confidently labeling males in historical postcards, especially in the Midwest
from 1890-1919, while demonstrating the immense time savings of applying
our models to the collection over manual analysis. Our work exhibits a
novel application of computer vision for historical postcards and the power
of machine learning to quickly and e�ciently analyze vast amounts of data,
supporting researchers in further sophisticated analysis.
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Figure 2: Bounding boxes enclose people. A blue bounding box indicates a person is a
male, and a red bounding box denotes a female
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Figure 3: Five common data augmentations. Click here to access/download;Figure;Figure 3.png
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Figure 4: Our methodology Click here to access/download;Figure;Figure 4.png
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Figure 5(a) In some postcards, humans cannot tell how many
people there are.
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Figure 5(b) Young boys and girls would wear dresses in the early
20th century, making it difficult to determine gender.
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Figure 5(c) Some postcards were paintings or pictures of
sculptures instead of pictures of people.
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Figure 5(d) The vast majority of the collection is from the Midwest,
so postcards from the middle east are not relevant for our model.
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Figure 6: A postcard and the seven additional training images produced by each
augmentation.
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Figure 7: Overlapping male and female predictions Click here to access/download;Figure;Figure 7.png
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Figure 8: The intersection over the union (IoU) is calculated by dividing the area of
intersection by the area of the union, producing a value between 0 (no overlap) and 1
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Figure 9: Example intersection over the union (IoU) values. The higher the value, the
more the bounding boxes overlap.
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Figure 10: Breakdown of the 77 postcards removed from the testing set. Click here to access/download;Figure;Figure 10.png
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Figure 11: The effects of the IoU duplicate threshold and IoU ground-truth threshold on
model F1 and accuracy for a model trained with its none of its layers frozen on the
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