Computer Science and Systems Analysis
Computer Science and Systems Analysis

Technical Reports

Miami University Year 2006

Interface-based Programming
Assignments and Automatic Grading of
Java Programs

Michael T. Helmick

Miami University

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa_techreports/2

Interface-based Programming Assignments
and Automatic Grading of Java Programs

Michael T Helmick
Miami University
Department of Computer Science and Systems Analysis
Oxford, Ohio USA

mike.helmick@muohio.edu

ABSTRACT

AutoGrader is a framework developed at Miami University
for the automatic grading of student programming assign-
ments written in the Java programming language. Auto-
Grader leverages the abstract concept of interfaces, brought
out by the Java interface language construct, in both the
assignment and grading of programming assignments. The
use of interfaces reinforces the role of procedural abstraction
in object-oriented programming and allows for a common
API to all student code. This common API then enables
automatic grading of program functionality. AutoGrader
provides a simple instructor API and enables the automatic
testing of student code through the Java language features of
interfaces and reflection’. AutoGrader also supports static
code analysis using PMD [4] to detect possible bugs, dead
code, suboptimal, and overcomplicated code. While Auto-
Grader is written in and only handles Java programs, this
style of automated grading is adaptable to any language that
supports (or can mimic) named interfaces and/or abstract
functions and that also supports runtime reflection.

1. INTRODUCTION

Automatic grading of student programs has been of in-
terest to computer science educators for some time [8] and
continues to gain attention today [7, 5, 9, 12, 14, 10]. There
have been various approaches with most leaning towards an-
alyzing the output of the entire program with some mention
of techniques and tools such as JUnit [16]. However, there
seems to be no established consensus on the best way to
automatically grade student code.

We take the position that there are two tasks involved in
grading of student assignments:

1. Functional testing

2. Evaluation of design and style

The Java reflection API allows the runtime system to be
inspected and manipulated dynamically. http://java.sun.
com/docs/books/tutorial/reflect/index.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2006 Miami University Technical Report: MU-SEAS-CSA-
2006-002 .

Preliminary analysis of Java coding style can be handled
automatically using either the open source Checkstyle [1] or
PMD [4] packages (AutoGrader is integrated with PMD).
While it might be possible to handle the evaluation of pro-
gram design in an automated fashion, we feel that this task
is best left to an experienced instructor or teaching assis-
tant. There is a large body of program design knowledge
that comes from experience, and this experience can not
easily be programmed into an automated system.

Functional testing, on the other hand, is a task that pro-
duces a boolean answer. A program either works and pro-
vides the correct answer based on predetermined inputs, or
it does not. Since software systems tend to be built in lay-
ers, we can further sub-divide assignments and target spe-
cific functionalities for testing. Our goal in automatically
testing student code is two-fold: (1) to adequately exercise
student code; and (2) to segment the tests such that pieces
of functionality are isolated and tested as independently as
possible. This not only makes automatic assessment eas-
ier, it is also a valuable teaching technique for instruction of
software construction.

We have introduced a pedagogy for our data structures
course that enables and utilizes automatic grading for pro-
gramming assignment functionality. Interface-based pro-
gramming can raise the level of abstraction within a program
and is often underutilized [15]. The use of interfaces with
the Java programming languages enforces an extra level of
indirection and allows the instructors to set a certain level of
commonality in a what is to be done manner, without regard
to the individualized implementation details. While seem-
ing restrictive on the surface, this still leaves implementa-
tion considerations up to individual students and does not
impose a common design, just a common interface. This
also unifies grading of student work since each individual
solution adheres to a prescribed interface, allowing the in-
structor to save time by constructing the tests a single time
and applying them to all students in the course.

This paper describes how we use interfaces in our data
structures class, how this enables discrete functional testing
of student code, and how this is integrated into the Auto-
Grader framework. Section 2 describes how interfaces are
used in the data structures curriculum. Section 3 gives
an overview of the AutoGrader framework, how it is con-
structed, and how grading packages are written by an in-
structor. Section 4 places this framework in the context of
related work in this field.

2. INTERFACE-BASED ASSIGNMENTS

1

11

For programming assignments in the context of a data
structures course, there is a certain level of commonality
between all student projects. When talking about abstract
data structures there is a natural tendency towards using
a common interface. For instance, data structures for lists
can have multiple implementations: array-backed list, singly
linked list, and doubly linked list. It doesn’t make sense that
each of these implementations would present a different in-
terface to the clients of list services. In fact, the usefulness
of these data structures increases if they implement common
interface[11], emphasizing the flexibility of switching imple-
mentations as long as the client only utilizes the interface.
Presenting data structures in this fashion is a worthwhile
educational objective [15].

We emphasize the use of the Java language construct of
interface in order to increase student awareness of compo-
nent software and to show that we can test software with-
out knowing the implementation details. Black box testing
is the process of testing software where we craft tests based
solely on the interface of the software, ignoring what we
know about the implementation details. For the list assign-
ment in our data structures course, we assign students the
task of implementing the standard java.util.List<E> in-
terface [2] by providing both array-backed and linked list
implementations. Because of the complexity involved, the
subList method is excluded.

Students are also required to write unit tests using JUnit
[3] for all aspects of their programs (White boz testing). This
serves two purposes: (1) to get students to test their code;
(2) again, to emphasize the use of interfaces in procedural
abstraction, getting them to focus on what is being done,
rather than howit is being done. If tests are properly written
against the List<E> interface and not directed towards a
specific implementation, they are able to reuse their tests
for both list implementations, reducing their overall time
spent on the assignment.

Configuring a JUnit test class to be able to use multiple
implementations can be enabled through the use of an ab-
stract class containing all of the tests, and two sub-classes
containing the code to instantiate the list classes. This sepa-
ration further emphasizes good unit testing in that it makes
it more difficult to make one test dependent on another test
in the test package. Students are provided with some starter
code to demonstrate constructing tests in this way. An ex-
cerpt of this starter code is shown in Listings 1 and 2. This
example setup works well when students are to provide more
than one implementation of the same interface and also pro-
vides an example of how code can be tested at the interface
level (Listing 1).

Listing 1: GeneralListTest.java
import java.util.List;
import junit.framework. TestCase;

public abstract class GeneralListTest
extends TestCase {

public abstract <I> List<T>
getList (Class<T> clazz);

/// test the constructor for a list
public void testList () {
List<String> strList =

13

17

19

13

getList (String.class);

assertNotNull (strList);
assertEquals(0, strList.size());

}

Listing 2: ArrayListTest.java
import java.util. List;
import java.util.Random;

public class ArrayListTest
extends GeneralListTest {

@Override
public <T> List<T> getList (
Class<I> clazz) {
return new studentid.ArrayList<T>();
//return new java.util.ArrayList<T>();

The code from Listing 1 is then completed by the student,
fully testing the list interface. Listing 2 shows how easy
it is to then either test the student developed code (new
studentid.ArrayList<T>()) or test the built in Java im-
plementation (new java.util.ArrayList<T>()). This en-
ables students to run their tests against an implementation
of an object that implements the same interface and is pre-
viously known to be in full working order. While the abil-
ity to do this is extremely helpful to someone who is new
to unit testing, it is not always possible to test an exist-
ing implementation. For assignments where there is not a
built in data structure, an instructor provided implementa-
tion can be used as the reference implementation. On more
advanced assignments, students are generally not provided
with a working implementation to compare against.

Interfaced-based assignments have been used successfully
in our data structures course for lists, binary trees, heaps,
sets, maps, and graphs. We emphasize the portability of
client code using an interface and thus the ability for a stu-
dent to write one test suite which can then test multiple
implementations. The use of assignments of this type and
subsequent automatic grading of student code is not limited
to the scope of a data structures course. Any course where
the instructor can provide a common interface to students
can be handled in this fashion and graded with AutoGrader.

3. AUTOMATED FUNCTIONAL TESTS

The AutoGrader framework is based on the concepts and
operation of JUnit. It is geared towards the execution of
student code where the implementation of a common in-
terface is implemented as described in Section 2. Auto-
Grader itself is a lightweight framework consisting of only
17 source files and less than 1,500 lines of code, making it
easily portable and available for integration with other util-
ities. In order to automatically grade a student assignment,
there must be uniform class names across the assignment.
For instance, all students will write a class called ArrayList
with different implementations being designated by being
included in a package name unique to each student. We

15

17

19

21

23

27

29

have found success in having each student create a package
whose name is their unique university id, so that classes are
named studentid.ArrayList.

An instructor must provide the actual tests to be run, a
list of student IDs, and the name of the concrete classes to
instantiate. There are three classes in AutoGrader that are
used by an instructor when grading an assignment: Graded
objects, GradingSession and GradingPackage.

Objects that extend edu.muohio.csa.
autograder.framework.Graded are similar to objects
that extend TestCase in JUnit. The major differ-
ence is that rather than instantiating the object to be
tested directly, the object is located using the provided
getInstanceOf0Object method. An instructor would write
an object extending Graded for each objective that they
want to test. As in the example described earlier, an
object is written to test a specific interface and can even
be reused to test different implementations of the same
interface for an assignment. Listing 3 shows the beginning
of code actually used to exercise student code for the
list assignment. Randomization is used within a certain
boundary to further exercise the code.

Listing 3: ArrayListTest.java
import java.util.List;
import java.util.Random;

import edu.muohio.csa.autograder.
framework . Graded ;

import edu.muohio.csa.autograder.
framework . GradingException

public class ListGrader extends Graded {

/// test add

@SuppressWarnings (” unchecked”)
public void grade_ Add_Element ()
throws GradingException {

int testSize =
(new Random ()).nextInt (100) + 15;

List<Integer> intList = (List<Integer >)

this.getInstanceOfObject (List.class);

for(int i = 0; i < testSize; i++) {
intList .add(new Integer (i));
assertEquals (new Integer(i+1),
new Integer(intList.size()));

As a matter of convention, any method in a class extend-
ing Graded whose name begins with grade will be identified
via reflection and considered to be a test method. Several
utility methods are included in the Graded object base class
to assist with test case construction, including:

1. getInstanceOfObject(class, Object...): Returns
an instance of the student code object under test (see
example in Listing 3). The actual object instantiated
is dependent on the current student being processed

in the grading session. The first parameter indicates
what class/interface the instantiated object should be
returned as. This parameter also determines the re-
turn type of the method since getInstanceOfObject
is a generic method. Optionally, a variable length list
of parameters can be passed, allowing the framework
to locate a specific constructor in the student’s class
using reflection. If the student did not provide an im-
plementation of the required object for this test, that
will be logged in the final report.

2. assertEquals(expected, actual): An assert
equals method that is overloaded for several different
types, including Object so that all types of objects can
be compared. If the assertion fails, GradingException
is thrown and if caught by the framework will be
logged in the report for this student.

3. assertTrue() and assertFalse(): Assert that a
boolean expression evaluates to true (or false).

4. fail(message): Force this test to be marked as failed
immediately. This is useful when you expect code to
thrown an exception, and it does not.

This framework would not be workable without the re-
flection capabilities built into the Java language. Reflection
enables the code to be dynamic in nature making use of
classes loaders to locate student code, and reflection to ac-
tually execute the test methods. To invoke each individual
test, a reference to the current Graded object and current
test Method are handed to a background invoker. This en-
ables each individual instantiation of student code and ex-
ecution of tests to be run in a separate thread, allowing
for the thread to be terminated should it be found to run
for too long. Early versions of AutoGrader did not do this,
but infinite loops found in submitted student code required
that there be a mechanism to stop testing of a long running
method and to move on to other tests and students.

When invoking a test, all possible exceptions are caught
and wrapped in a GradingException if the test case itself
does not catch the exception. This allows for tests to be con-
structed that purposely induce exceptions on student code,
and records a failure if the exception is not thrown.

After creating the various Graded objects for an assign-
ment, they can be composed into grading packages, and ulti-
mately a grading session. A GradingPackage is constructed
by passing in an instance of the Graded object to use, a name
to display on the grading output reports, and the name of
the student classes to instantiate.

Multiple GradingPackage instances are added to a single
GradingSession instance which is also configured with the
output directory to use. An optional text user interface can
be attached to the grading session which provides constant
updates during the execution of the program, but provides
a slight performance penalty. Listing 4 shows code actually
used to construct the grading session for a programming as-
signment. This example displays the possibilities for reuse of
the same test harnesses to test different implementations of
the same interface. Each GradingPackage is a different sec-
tion in a student’s final report, a sample report is available
in Appendix A.

Listing 4: GraderMain.java

3

11

13

19

GradingSession session =
new GradingSession ();
session .addTextUI ();
session .addFileReporter (
7 Joutput/directory/”);

// ADD the grading packages

session .addPackage(new GradingPackage (
new ListGrader (), ”ArrayList—Phase 17,
7 ArrayList”));

session .addPackage(new GradingPackage (
new ListGrader (), ”LinkedList—Phase 17,
" LinkedList”));

// called once for each student
// or loaded from a file
session .addStudent (
new StudentRecord(”studentid”,
”?Student Name”));
session .run();

Once the session object’s run method is invoked, the tests
are run by executing each grading package (in the order
added) for each student (in the order added). The appro-
priate student class file is located using the default class
loader, but the object is not yet instantiated. Each test is
then run one at a time, with each invocation started in a
separate thread and allowed to run up to the configurable
timeout value. New instances of the student objects are cre-
ated each time the getInstance0Of0Object method is invoked
within a test.

AutoGrader also makes use of PMD [4] to evaluate the
style of student code. PMD checks for some common coding
problems such as empty catch blocks, empty if statements,
comparing objects with == instead of the equals method.
A full list of Java style rules supported by PMD is available
on the PMD Web site. We have found that PMD provides
a good starting point for basic evaluation of coding style,
but we still recommend manual evaluation of code by the
instructor.

The AutoGrader framework is both powerful and flexi-
ble, and integrates with interface-based programming as-
signments to test student code for functionality and provide
feedback reports. For each student assessed during a grad-
ing session, a text file is created reporting what the result
is for each test. A passed test receives a simple notation
of “passed”, while a failed test indicates what comparison
failed, or which line of code threw an exception during ex-
ecution. Details of what is being tested are hidden from
the student, leaving the option of disclosure to individual
instructors. Descriptive test names convey the intent of the
test, but we allow students to see the actual code of the tests
upon request.

4. RELATED WORK

Various efforts for automatic grading of student program-
ming assignments have been undertaken. Many systems rely
on pattern matching techniques as is done in both ASSYST
[10] and TRY [13]. The major drawback to this approach
is only the final output of the program is checked for cor-
rectness against the final “correct” output. The AutoGrader
framework allows for an instructor to take a narrower view of
correctness and assess a student’s performance on a method

by method basis. Properly constructed test cases will ex-
plicitly test a method for correct or incorrect under a single
circumstances, leading to the possibility of multiple tests for
an individual method.

It has been suggested that introducing named interfaces
earlier in the curriculum is worthwhile [15]. Named inter-
faces help students to learn the concept of procedure ab-
stracting and the decoupling of what an object does from
how it is implemented.

Some previous work has been done in testing of student
code using the JUnit [3] framework and OCETJ [16]. As
with AutoGrader, the authors note that this approach pro-
motes functional testing rather than textual output com-
parison. OCETJ appears to exercise student code through
JUnit, but details of how the testing is implemented and
availability of a batch mode are not specified. The Auto-
Grader framework goes farther in providing a comprehensive
framework that can be deployed in batch mode for the in-
structor and includes background invocations to catch long
running student code. The flexibility of the AutoGrader
code, including use of the observer pattern [6] makes in-
tegrating AutoGrader into your existing submission infras-
tructure a possibility. Elements of the framework extend the
Java Observable class, allowing you to write custom code
registering as an observer of grading events.

This work further differentiates itself from use of JUnit in
OCET]J in terms of namespaces. If the same JUnit test cases
are run on multiple students’ code, that requires each stu-
dent to construct their class in the same namespace. This,
in turn, requires a new Java virtual machine instance to test
each students code. In AutoGrader, we provide for separate
namespaces (Java packages) to be used for each student in
the class, allowing the tests to be run in batch mode and in
the same Java virtual machine instance.

The AutoGrader framework is more lightweight than the
full submission system such as Web-CAT [5]. Our frame-
work is meant to be a solution that can be rapidly deployed
and run in an offline fashion or be easily integrated into other
online systems. For instance, AutoGrader is integrated with
our departmental submission system, but is easily discon-
nected and can be used with other submission systems. Our
solution to automated assessment has the same goals as the
Web-CAT system, but takes a different approach.

S. CONCLUSIONS

AutoGrader is a framework for Java developed at Miami
University for the automatic grading of programming as-
signments based on common interfaces. This framework has
been used successfully for over a year in our data structures
course to grade programming assignments for functionality.
Grading test suites implemented thus far have ranged in size
from 30 to over 100 test cases. Test cases themselves range in
complexity in order to adequately test student code. A test
suite containing 90 tests can be run for a course containing
50 students in just over 10 minutes, providing an effective
use of time for the instructor. Student source code is (op-
tionally) checked for style using PMD [4] and its included
style rules.

The assignments are presented to students as a task of im-
plementing an existing or instructor provided interface pro-
moting procedural abstraction while making each student’s
code testable by the same set of tests. Automated grading
of students’ code requires an instructor to develop unit tests

aimed at verifying discrete segments of the assignment.

While the framework has been used for data structures
assignments including lists, binary trees, heaps, sets, maps,
and graphs, the framework can grade any code for which
there is an interface and for which unit tests can be writ-
ten. In the end, AutoGrader provides an assessment of only
whether or not the program, or parts of the program, pro-
duce the correct answer. An instructor should still examine
the students’ code to provide advice and assessment of de-
sign and implementation style.

AutoGrader is being integrated into Computer Science
CourseWare (CSCW), an integrated online courseware so-
lution developed at Miami University, and will enable stu-
dents to receive feedback on their assignments before final
submission of their solution. The complete source code
for the AutoGrader framework is available for download
at http://www.users.muohio.edu/helmicmt/autograder/.
Work is also underway to integrate Java code coverage anal-
ysis of student written unit tests.

6. REFERENCES

[1] http://checkstyle.sourceforge.net/.

[2] http://java.sun.com/j2se/
1.5.0/docs/api/java/util/list.html.

[3] http://junit.org/index.htm.

[4] http://pmd.sourceforge.net/.

[5] S. H. Edwards. Teaching software testing: automatic
grading meets test-first coding. In OOPSLA ’03:
Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications, pages 318-319, New York,
NY, USA, 2003. ACM Press.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[7] J. A. Harris, E. S. Adams, and N. L. Harris. Making
program grading easier: but not totally automatic. J.
Comput. Small Coll., 20(1):248-261, 2004.

[8] J. B. Hext and J. W. Winings. An automatic grading
scheme for simple programming exercises. Commun.
ACM, 12(5):272-275, 1969.

[9] C. Higgins, P. Symeonidis, and A. Tsintsifas. The
marking system for coursemaster. In ITiCSE ’02:
Proceedings of the Tth annual conference on
Innovation and technology in computer science
education, pages 46-50, New York, NY, USA, 2002.
ACM Press.

[10] D. Jackson and M. Usher. Grading student programs
using assyst. In SIGCSE ’97: Proceedings of the
twenty-eighth SIGCSE technical symposium on
Computer science education, pages 335-339, New
York, NY, USA, 1997. ACM Press.

[11] J. Krone. Multiple implementations for component
based software using java interfaces. J. Comput. Small
Coll., 19(1):30-38, 2003.

[12] L. Malmi, A. Korhonen, and R. Saikkonen.
Experiences in automatic assessment on mass courses
and issues for designing virtual courses. In ITiCSE
’02: Proceedings of the 7th annual conference on
Innovation and technology in computer science
education, pages 55-59, New York, NY, USA, 2002.
ACM Press.

[13] K. A. Reek. The try system -or- how to avoid testing
student programs. In SIGCSE ’89: Proceedings of the
twentieth SIGCSE technical symposium on Computer
science education, pages 112-116, New York, NY,
USA, 1989. ACM Press.

[14] R. Saikkonen, L. Malmi, and A. Korhonen. Fully
automatic assessment of programming exercises. In
ITiCSE °01: Proceedings of the 6th annual conference
on Innovation and technology in computer science
education, pages 133-136, New York, NY, USA, 2001.
ACM Press.

[15] A. Schmolitzky. "objects first, interfaces next” or
interfaces before inheritance. In OOPSLA ’04:
Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems,
languages, and applications, pages 64-67, New York,
NY, USA, 2004. ACM Press.

[16] G. Tremblay and E. Labonte. Semi-automatic marking
of java programs using junit. In International
Conference on Education and Information Systems:
Technologies and Applications (EISTA ’03), pages
42-47, 2003.

APPENDIX
A. SAMPLE REPORT

Below is an excerpt from an AutoGrader report for a data
structures assignment on graphs. The PMD style analysis
is not shown.

x* Test Package = Phase III (Shortest Paths)
class tested: studentid.NamedGraph
SE555555555>5>> test 1 <K<K

test name: gradeShortestPath
running time: 0.101 seconds
*% PASSED *x*

SESSOO555555>> test 2 <K<KLKLLLLLLLKLKKKK
test name: gradeShortestPath_2
running time: 0.101 seconds
'l FAILED !!

reason=java.lang.NullPointerException
location=edu.muohio.csa.autograder.Invoker.run(
Invoker. java:35)

java.lang.Thread.run(Thread. java:613)

S353555555555> test 3 <K<K
test name: gradeShortestPath_3

running time: 0.103 seconds

*% PASSED *x

SE55555>35555>> test 4 <<K<KLKLLLLLLKLKLKLKK
test name: gradeShortestPath_4

running time: 1.100 seconds

*% PASSED *x*

SEE5555>5555>> test 5 <K<K
test name: gradeShortestPath_5

running time: 0.101 seconds

*% PASSED *x

x* package results: 4/5 pass percentage: 80.00
** End Test Package = Phase III (Shortest Paths)

